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1. INTRODUCTION.

The main objective of this paper is the characterization of the cooling schcdules under which

a simulated annealing algorithm converges to a set or desired states, such as the set where some

cost function is minimized. In particular, thus generalizing the results of Ilajck (9]. The method

we follow is based on the observation that in simulated annealing algorithms the "temperature"

remains approximately constant for sufficiently long times. For this reason, we may exploit bounds

and estimates which are valid for singularly perturbed (approximately) stationary Markov chains

and obtain int.resting conclusions for the simulated annealing algorithm. In the course of developing

our result oni simulated annealing we derive certain results on approximately stationary singularly

perturbed Markov chains which -ecm to be of independent interest.

The structure of the paper is the following. In Section 2 we assume that we are dealing with

a Markov chain in which each of the one- step transition probabilities is roughly proportional to a

certain power of c, where f is a small parameter. We then present an algorithm, consisting of the

solution of certain shortest path problems and some graph theoretic manipulations, which provides

estimates for the transition probabilities of the Markov chain for any time between 0 and 1/e. Then,

in Section 3, we indicate how the procedure of Section 2 may be applied recursively to produce

similar estimates on the transition probabilities for all times. In Section 4 we use the results of

Section 3 to characterize the convergence of the simulated annealing algorithm.

11. MARKOV CIIAINS PARAMETRIZED BY A SMALL PARAMETER.

In this Section we derive order of magnitude estimates on the transition probabilities of a non-

stationary Markov chain. Our results are based on the assumption that such order of magnitude

information is available on the one-step transition probabilities of the Markov chain.

We start with some notation. We use N and NO to denote the positive and the nonnegative

integers, respectively. We also let U denote the set of functions f:(0, oo) 1- (0, oo) such that for

every n E X 0 there exists some c,, > 0 such that f(c) !_ c,C n , VC > 0. Notice that U has the

property that f(c)/0" E U, Vf E U, Vn E N. Also notice that c'1" E U, for any C E (0, 1).

We consider a (generatiy non-stationary) finite state, discrete time Markov chain X = {x(t):t> 0)

with state space {1,..., N). For any t> 0 we let qij(t) = P(x(t + 1) = j I x(t) = i) and pi(t) =

P(x(t) = j I x(O) =- i). We assume that sonic structural information is available on this Markov

chain. More precisely, let there be given a collection . {aij: 1 < i,J N) of elements of

NoU{oo}. Let f E U and let C 1 , C2 be positive constants. We assume that for some E > 0 we have
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C10" < q,3(t) < C2 0,o, Vt> 0, if a, < o, (2.1)

0 < qi,(t) <_ f(C), vt>o, ifaiy =oo. (2.2)

We call A the structure or the Markov chain X. We make the following assumption on A:

a,< ij + ajAk, Vi,j,k. (2.3)

Wc shall discuss later how this assumption may be removed. For the rest of this section we assume

that A4, C1, C2 f are fixed and we denote by -M,(A, C1, C2 ,f) the set of Markov chains for which

(2.1) and (2.2) hold. (Occasionally wc use the shorter notation M,, provided that no confusion may

arise.)

We classify the states in the state space by considering a Markov chain in which only those

transitions from i to j with ai" = 0 are allowed. In particular, a state i is called transient if there

exists some state j such that aij = 0 and aji > 0. Otherwise i is called recurrent. In view of

assumption (2.3), this is equivalent to the conventional definition. Let TR, R denote the sets of

transient and recurrent states, respectively. For any i E R, we let Ri = {j: a,, = 0}. We then have

j E Ri if and only if j E RI and i E R; we thus obtain the usual partition of the set of recurrent

states into ergodic classes. Also, notice that, for any i E TR, there exists some j E R such that

aq= 0.

Our first result provides order of magnitude estimates on the probability that a recurrent

state j is the first state to be visited, starting from a transient state i. We use the notation T =

min{t> 0: x(t) E R}. We also use the convention that E' = 0.

Proposition 2.1: There exist F > 0 and 9 E U such that for any c > 0, X E ., i E TR, Ej R we

have

C,04, < P(x(T) j I x(0) = i) < Fei ! + g(e). (2.4)

Proof. Let us fix some j E R. We define, for a E /U{oo), 5. = {i E TR: aq = a} and Q. =

{i E TR:a2! a). We then define p,, = supxEM maxiEQ P(x(T,) = . 1 x(0) = i). We first prove,

by induction on a, that for any a < oo there exists sonic F. > 0 such that pO, _ F.(*, VC > 0.

This is clearly true for a = 0. Suppose it is true for all a less than some positive integer P. Let

i E Q0 and X E .,M. Notice that for any state k we have aik + a j_, ai. . Using (2.1) and the

induction hypothesis we obtain

P(x(T) = I x(o) i) 5 ] '(x(7") = I x(l) k)I,(x(l) k l(o) i) +
0=0 kGS,.
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+I'(x4l) E Q I x(O) = i) max l'(z(x) = x(f) =1) + l'(x(1) = j x(O) =) <

Z Z 1,,~",,~e&,C",, + (1 - CI)p,, + C2.! <
kES.

[N ,,ax{FIC2 + C 2].!P + (1 -

a<0 -

Taking the supremum of the left hand side over all i E Qp and all X E .M,, we obtain, for some

constant F,

pp,, < FcP + (I - CI)pp,,

from which it follows that the induction hypothesis is also true for 3 + 1.

Finally, we assume that i E So. Then,

P(x(T) = x(O) == i) <

P(x(l) E TR, x(1) 0 S x(O) = i) + P(x(1) = j i z(O) = i) + P(x(l) E S. I (O) <i)p,,, _

Nf(c) + (I - C,)p.,.

Thus, p,, < (N/Ct)f(c), V, > 0. This completes the proof of the second inequality in (2.4). The

first inequality is a trivial consequence of (2.1). e

Let us mention another method for proving Proposition 2.1. We could first prove it for

stationary Markov chains in .M,, because in this case there are explicit formulae for the absorption

probabilities. (Such is a result is obtained in [12].) Then, we notice that p,, is bounded above

by the absorption probabilities which would result if an adversary was allowed to choose qi(t) at

each time t after observing the current state, subject to the constraints (2.1) and (2.2). It follows

from standard results in Markovian decision theory that the optimal policy for the adversary is a

stationary one and therefore the bounds obtained for stationary Markov chains also apply to the

nonstationary ones. Unfortunately, this method does not seem to work for our subsequent results

because they correspond to a maximization over a finite horizon for which stationary policies are

not in general optimal.

Let us also point out that Proposition 2.1 is false if the assumption (2.3) is removed.

The main result of this section is based on the following algorithm which provides important

structural information on the long run behavior of Markov chains in .M,.

A;gorithm: (Input: A4 = {aYi: 1 < i,j :_ N} and R; Output: V - {V(i,j): 1 < ij ! N})

4
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I. Let cii ai - 1, if i E 11, j E R, j 0 R and cij = ai3 , otherwise. (Notice that c- - 0 always

holds.)

2. Solve the shortest path problem from any origin i E R to any destination j E R, with respect to

the link lengths cij and subject to the constraint that any intermediate state on a path must be an

element of R. For example, the Bellman algorithm may be used: Vo(i,j) = 0, if i = j; Vo(i,j) = 00,

if i & j and

V+ 1 (i,j) = nmin{V(i, k) + chi}. (2.5)
AhER

Let V(i,j) be the length of the shortest path (which is obtained after at most N stages of the

Belhnan algorithm suggested above).

3. If i E R, i E TR, let

V(ii) = min{V(i, k) + cki} = min{V(i, k) + caAt}. (2.6)
kER kER

4. If j E TR, let

V(i,j) = min cik + V(k,j)) = minaik + V(k,j)}. (2.7)
kER AIER

Notice that the output V(i,j) of the above algorithm may be interpreted as the length of the

shortest path from i to j subject to the constraint that all states on the path belong to R, except

possibly for the first and the last one. We continue with a few elementary observations on this

algorithm:

Proposition 2.2: (i) V(ij)> 0, Vi, .

(ii) V(i,j) 1, Vi, Vj E TR.

(iii) V(i,j) < V(i, k) + V(k,j), Vi,j,k.

(iv) If j 6 ? and j E R3 , then V,(i,j) - Vn(ij"), Vi, n. Also, If i E R and i E R, then V(i,j) -

V,,(i', j), Vj, n.

Proof: Part (i) follows from the shortest path interpretation and the nonnegativity of the ci's. Part

(ii) follows from (2.6) and the fact that agj. 1, whenever k E R and j E TR. Part (iii) is clearly

true for k E R, due to the shortest path interpretation. So, assume that k E TR. Let us take

shortest paths from i to k (or length V(i,j)) and from k to j (of length V(k,j)) and concatenate

them. This produces a path from i toj, of length V(i, k)+V(k,j), such that all intermediate states,

except from k, belong to R. If k, and k2 are the predecessor and the successor, respectively, of k in

this path, we use (2.3) to conclude that cAk + CkAk2  ekA which shows that k may be eliminated
from this path, to produce a path from i to j, with all intermediate elements belonging to R, and

5



with length less or equal than V(i, k) + V(k,j), as desired. Finally, for part (iv), we use assumption

- (2.3) to sce that cij = ,i. = 0, whenever i E It and j E Ri. The result follows from the shortest

path interpretation. *

We notice that, as a consequence of part (iv) of the proposition, the algorithm need not be

" carried out for all states. It suffces to consider transient states and one representative from each

-' ergodic class Ri.

The following proposition establishes the relevance of the V(i,j)'s to the Markov chains under

study.

Proposition 2.3: For any C3 > 0, there exist positive constants C 1 , C 2 , G3, C 4 , with G 4 < 1, and

some g E U such that, for any f > 0, for any Markov chain in . and any states i, j we have

Gi(c(t - N))NCv ( i 'j)  + p t) _ G2 xv(' + xiGGu "', + g(c), Vt E [N,C 3 /r], (2.8)

where x = 0, if i E R, and X. = 1, otherwise. (The upper bound in (2.8) is also true for t E [1, N].)

In particular, there exist G, > 0, G2 > 0, g E U such that

GV(ij) pij(1 < 0 2CV(i,) + g(f). (2.9)

Proof: Notice that for any i E R, j 0 Ri we have qij(t) C2f, Vt. It follows that P(x(t + 1) (L
R I x(t) E R,) :_ NC 2c, from which we easily conclude that there exists some Ft > 0 such that

P(x(t)E R,I x(s) E R,) > F1, 0< a < t < C3 I, W > 0, VXE M,, Vi E R. (2.10)

We now start the proof of the lower bound in (2.8). If V(ij) = oo, there is nothing to prove,

so we will be assuming that V(ij) < o. We first assume that i E R and j E R. Then, there exists

a sequence i = il, i 2 , ... ,in = j of elements of R, (with n < N) such that --Xi V(i,j)

" and such that aij,+_ 1, Vk. Let k E X/ and suppose that there exists some Fk > 0 such that, for

" allc > 0andforallXE M4 ,

P(z(t) E R,, x(o) i) > Fk(c(t - k + I))"-,,j- 1 li,+i', Vt E [k - 1, C3/]. (2.11)

We then have

P(x(t) E Ri,.+, I x(0) = i)>

Z P(z(t) E Ri,+, Ix(s + 1) E R,,,) '(x(a + 1) E R,+, I x(s) E R) 1'(x(,) E R, I x(0) i) >

6
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t --~ - Ik + l)) th~ Cai f"o )F2&&,1 >

- k + l))h- . (2.12)
a~h

Clearly, there exists a constant b' such that

t- I

(a - k + t)k- ' > Fb'(t - k)h, Vt.
a k

Inequality (2.10) shows that (2.11) holds for k = 1. We have thus proved by induction on k that

(2.11) holds for all k. Notice that

P(x(t) = j(0) = i) > l'(z(t) =iz(t - 1) E i) P((t - 1) E Rj Ix(O) = i)>

C iP(x(t - 1) E Rj I x(0) = i),

which completes the proof of the left hand side of (2.8), for the case where i E It and j E R.

Suppose now that i E R, i E TR and let k E R be such that V(i,j) = V(i,k) + akj. If

o = oo, then V(i,j) = oo and there is nothing to prove. So, assume that a .< o. Then,

P(z(t) j I x(0) = i) P(x(t) = i z(t - 1) = k)P(x(t - 1) = k l x(O) i)

C cak, P(x(t - 1) = k I z(O) - i).

Given that we have already proved the lower bound for pih(t), the desired result for pij(t) follows.

Finally, let i E TR. The result follows similarly by choosing k E R so that ai + V(k,j) =

V(i,j) and using the inequality

P((t) = j I z(0)= i) >_ P(z(l) = k I x(0)= i) P((t) = j(x() = k).

We now turn to the proof of the upper bound in (2.8). Let i E R be fixed. We define E, =

{j E R: V(i, 3 ) = a , T. = {j E TR: V(i,j) = a}, E 0 = U0 aEo. We also define similarly

E>0, T<O, T>a. We will prove by induction that for any a < oo the following statements hold:

(Sh'.): There exists some Ga such that Vc > 0, VX E M,, Vi E E>a and Vt < C3/ we have

Pi(t) < Ga~a.

(ST,,) There exists some G' such that Ve > 0, VX E .M,, Vj E Tt, and Vt < Ca/C we have
pij(t) < , ell

7
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Statement S!EO is trivially true, with G,, = 1. We now prove ST. (Notice that T2 1 ='TR.)

Now,

'(x(t + I) E TIR I x(O) i)

P(x(t + 1) E Tit I x(t) E TI1) I'(x(t) E TIR x(O) = i) + P(x(t + 1) C TI I x(t) E I?)

(I - Ci)P(x(t) E TI1 I x(O) = i) + NC2 f. (2.13)

Since i E R, P(z(O) E TR I x(O) = i) = 0 and (2.13) iznplies P(X(t) E TR I x(O) = i) <_ (NC2C)/C1,

Vt> O, which proves ST.

Now let a be some positive integer and assume that statements SEjj- and ST# are true, for

all 3 _ a. We will prove that SE, and ST,+, are also true. We first nccd the following Lemma.

Lemma 2.1: If j E J = E<(a_1 )UT<G and k E K = EUT>( +j), then V(i,j) + act>_a + 1.

Proor: (i) If j E 5<(l_,, k E E>,, then V(ij)+ cjk =z V(ij)+ cjk + I> V(i, k)+ 1 > a + 1.

(ii) If j E ("-.l), k E T;,(,+l), then V(i, j) + ajk = V(i,j) + cjk > V(i, k)>a + 1.

(iii) If j E T<., k E E>,, let I E R be such that V(i,L) + ai V(ij). Suppose that L E R.

Then, V(i,L) = V(i,k)>a and V(i,j) = V(i,l) + aij>>a + 1, which contradicts the assumption

j E T<a We thus assume that 1 0 RA. Then, V(i,j) + oxjk, = V(i,l) + aij + ajlkV(i,1) + al=

V(i,1) + cjA + I>V(i,k)+ 1>a + 1.

(iv) If3 E T:5,, k E T> (,,+1), 1let I E R be such that V(i,I) + aj = V(i,j). Then, V(i,j) -4- a, =

V(i,I) + at + aXk V(i,I)+ alk V(i, k)> a+ 1. *

We now use the induction hypothesis and Lemma 2.1 to obtain

P(x(t + 1) E K Ix(t) E J) P(X(t) E JIX(O) = i) <

E P(x(t + 1) = klI(t) = j)PCx(t)-= j Ix(0) = i) <
kEK,,EJ

F, C2 ,EahGEV(iJi) < (N 2 C2 G)eo'~',
kG K, iG .

where G = max{Gp 1,G',; 13 < c}. It follows that

P(x(t) E K I x(0) = i) _ (N 2 C 2G) r+ C1 /C, Vt E [1, Ca/],

which proves SEa. Finally,

P(x(t - 1) E T>.+, Ix(0) = t) < (1- Ci)P(x(t) C T>+ 1(0) i) + NGc aC2 C + N 2 C 2Ge" +1

8



which shows that

P(x(t) E T,,+I Ix(O) = i) (I/C 1)(NG.,C 2 + N 2 C2G)c +1 , Vt E [1,C 3/(].

This proves STa and completes the induction.

We have thus completed the proof of the upper bound in (2.9) for the c=e where i E R and

V(ij) < co. The proof for the case i E R and V(ij) = cc is very simple and is omnittcd. We now

assume that i E TR. Let T be the random time of Proposition 2.1. Then, for some F > 0, G > 0,

9,9',g9" E U, we have

Pj(t) <

P(T > t) + E P(x(t) = x(T) = k, T < t) P(x(T') = k, T < t I x(O) = i) P(T < t I x(O) = i) <

kER

(l - C,)'/' + [ + g(,)][Fc , ' + <_
kER

(1 - C,)'' + NGFEV(i,) + g"(c), Vt E [1, C3 1].

This completes the proof of the proposition. e

Notice that the upper and lower bounds are tight, within a multiplicative constant independent

of F, when t = 1/c. For smaller times the bounds are much further apart. It is not hard to close

this gap, although we do not need to do this for our purposes. In particular, the exponent in the

term ((t - N + 1))N it) the lower bound may be reduced. This may be accomplished with a minor

modification of the induction hypothesis in the proof of the lower bound. The upper bound may be

also improved in a similar manner.

The remainder of this section is devoted to showing that the assumption (2.3) on the structure

of ,he Markov chains ur-1-r study is not an essential restriction. Roughly speaking, we will esta'lish

that our results are applicable to any Markov chain which is aperiodic in the fastest time scale in a

strong sense to be defined below.

Let there be given a set of nonncgative integers A = {aij: I < ij < N), not necessarily

satisfying (2.3). Let us define fli3 as the length of the shortest path from i to j, with respect to the

link lengths aj. (we require a "path" to have at least one hop; thus, Ojj 4 0, in general.) We make

the following assumption on A:

Assumption AP: There exists some positive integer M with the following property: for any m>M

and for amy i such that 3,, = 0, there exists a path (ii, i2, ir) such that il = i= i and which

has zero length (with respect to the link lengths la").

9



For any Markov chain whose structure is described by A, icaning that the estimatei (2.1), (2.2)

are vaid, assumption A P requires tire following: if we substitute 0 for (., and decompose the resulting

Markov chain into ergodic cias;ses, in the usual ruaner, then each of the non communicating classes

of recurrent states is aperiodic. However, this requirement is not sufficient for Assumption Al' to

hold.

It can be shown that if .4 satisfies assumption AP, then M can be chosen to be smaller than

N2 . (This is related to the fact that the "index of primitivity" of any primitive nonnegative matrix

is bounded above by N 2 - 2N + 2; for more details, sec Chapter 2 of [13].)

Now suppose that A satisfies assumption AP and let M be as prescribed in that assumption.

Given some positive constants C1, C 2, soniC f C U and some f > 0, consider the set M,(A, Ct, C 2 , f)

Let Q be some positive integer. For any X E M,(JA, c,c2,f), let us define X Q to be the discrete time

Markov chain obtained by sampling X every Q time units. Finally, let 8 = {3ij: 1 < i,j N}.

Due to their definition as shortest path lengths, tire coellicients Cij satisfy (2.3). The following

Proposition establishes that the coefficients 3ij describe the structure of tile sampled Markov chain

XQ, at least when the sampling period Q is chosen large enough.

Proposition 2.5: Suppose that A satisfies Assumption AP. Then, there exists some Q > 0, some posi-

tive C', C' and some f' E UI such that {XQ:X E M,(A, Cl, C2 , f)} is a subset of MB, C, C, If').

Proof: Let 3 = max{/3ij: Oij < oo} and Q = max{N(B + 2), M + 2N}, where M is the constant

of Assumption AP. Let us fix some i, j. Consider an arbitrary scqucncc of Q transitions from i to

j. The probability that this sequence occurs is bounded above by CQeij . There are less less than

N Q such sequences. Hence, P(xQ(1) = jlx(O) = i) < NQCQc1' i , which shows that XQ satisfies

the right hand side inequality of (2.1), with C2 replaced by C' = (NC.2 )Q and with acr- replaced

by 3i.

In order to show that the left hand side inequality in (2.1) also holds for the Markov chain XQ,

it is sufficient to produce a sequence of exactly Q transitions leading from i to j for which the total

length (w.r.t. alj) is less or equal than 3ij. This is vacuously true if )3jj oo; we thus assume

that i,, < oo. We proceed as follows: find sonic path from i to j of length Oij. Then find some k

which appears on this path at least (B + 2) times. (Such a k exists because Q N(B + 2).) Then,

>'3j, >(B + 1)/3, which show3 that 3A 0. Now, find a path from i to k with length equal

to f3li, as well as a path from k to j with length 3A:j. Let ni, n2 be the nunlber of hops in these

paths, respectively. Without loss of generality, we may assume that n1 < N and n2 < N. Then,

find a path from k to k (i.e. a cycle) which haq zero length arid exactly Q - n- n 2 hops. (This is

10
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possible due to Assumption AlV and because Q - n - n2 Q - 2N M). Finally, merge the three

paths to obtain a path from i to j with lcngth ,ij and with exactly Q hope. *

Using the above result, Proposition 2.3 becomes applicable to ;n appropriately sampled version

of a given Markov chain, assuning condition AP. We notice that Proposition 2.3 will provide us

with estimates or the transition probabilities only for those times which are integer multiples of Q.

llowever, it is easy to show that the same estimates are also valid for intermediate times as well.

Using a more complicated reduction procedure it is possible to apply an appropriately modified

version of Proposition 2.3 to all discrete Markov chains, including periodic ones.

We close this section by pointing out that there is nothing special about the cocfficients aii.

being integer. For example, if the aij are rationals we could introduce another small parameter 6

(to replace c) and another set of integer coefficients fij, so that 6,i = i. Even if the aij's are

not rational, neither are their ratios rational, the proof of Proposition 2.3 remains valid, as long as

min{aq3} 1. This can be always achieved by redefining the small parameter e.

11



Ill. I)ETIRiLINING THE,' STIUCTUIji,-i,] AT usm UCISI,, si,OWuI TIME SCAuS.

Proposition 2.3 allows us to determine the structure of a Markov chain X E M, in the first of

the slow time scales, that is for times of the order of I/c. Hlowcver, we notice that the transition

probabilities P(x(l/c) = j Ix(O) = i) satisfy (2.1), (2.2), (with a new choice or C 1, C2 , f) provided

that we replace a by V(i,j). Moreover, due to part (iii) of P,.+oSition 2.2, the coellicients V(i,j)

satisfy the triangle inequality (2.3) and, therefore, Proposition 2.3 becomes applicable once more.

This yields estimates for the transition probabilities I'(x(1/ 2 ) = jz(O) = i). This procedure may

be repeated to yield estimates for P(z(l/cd) = jiz(0) = i), for any positive integer d. To summarize,

we have the following algorithm:

Algorithm II: (Input: A = {ai.: I < i,j N}, satisfying (2.3); Output: for each d E NO, a

collection Vd {Vd(i, j): 1 < i,j K N} and a subset R d of the state space.)

1. Let V°(i, j) - a,3 , Vi, j.

2. Having computed Vd, let Rd be the set of all states such that Vd(i,j) = 0 implies Vd(j, i) = 0.

(TRd will denote the complement of Rd and, for any i E Rd, let 114 = {j E Rd: Vd(ij) = 0}.)

3. Let Vd, Rd be the input to Algorithm 1; let V + 
I be the output returned by Algorithm I.

The remarks preceding Algorithm II establish the the next proposition. (Notice that when we

use Proposition 2.3 to obtain estimates for t - 1/Ed, the unit of time becomes 1/td-1. For this

reason, the variable t in Proposition 2.3 must be replaced by te dl.)

Proposition 3.1: Given some A satisfying (2.3) and some d E N, let Vd(ij), R d, be the collection of

integers and the subset reeturned by Algorithm 11. Then, for any positive constants C1 , C2 and for

any f E U, there exist positive constants D1, D2 , D3 , D4 < 1 and g E U, such that, for any f > 0

and for any Markov chain X E .M,(, C1,C2, f) we have

D(t(e-t-N))NCV'(i j ) < P(z(t)=j x(O) = i) < D2 EV(i'j) + xjD3Dt'd (vd-l(j) +9(E),

Vt E (NI/-', 1/SI, (3.1)

where Xi = 0, if i E Rd-
1 and Xi = 1, otherwise. (The upper bound in (3.1) is also valid for

t E [/ed- , N/d- I].) In particular, there exist D1 , D2 > 0, g E U such that

Dlev'(ii) < pij(-I) K D2EV'(i ',) + 9(f). (3.2)

We continue with a few remarks on the quantities computed by Algorithm 11.

Proposition 3.2: (i) For any d, i, j, we have V(i,j) _ V (i, k) + +Vd(k,j).

12



°-". (ii) For any d, we have 1 +'C R d.

(iii) Vd(i,j) + VC(j, k) ViIIx(e'd}(i, k), Vi, j, k, c, d.

Proof: (i) This is an imnediate consequence of part (iii) of Proposition 2.2.

(ii) Suppose that i E Rd+ . Thcn, Vd+K(i,i) = 0. Using part (ii) of Proposition 2.2, we conclude

"" that i V TR1d, or, equivalently, i E Rd.

(iii) Using Proposition 3.1 twice, there exist constants D1 , D2 such that

+ = ,k I(O) = ,) D2CV. ) (i,k).

Moreover, this inequality is true for all X E .M, and for all c > 0. Letting c be arbitrarily small,

we conclude that the claimed result holds. *

As a corollary of Proposition 3.2 we conclude that some of the upper bounds of Proposition 3.1

are true even for times smaller than Ifed- t.

Corollary 3.1: If i E Rd, or if j E IR, or if Vd(i,j) :_ V(i,j), Vc < d, then there exists some C > 0

such that

p1i(t) < Cev (j), Vt E [0, l/Ed], VX E M,,Vc > 0. (3.3)

Proo:f. If i E R d, then Vd(i,i) = 0. For any c < d, and for any j, we may apply part (iii) of

Proposition 3.2 to obtain Vd(ij) :_ Vd(i,i)+ Vc(i,j).= Vc(i,j). A similar argument leads to the

same conclusion if j E Rd. Now, given some t < 1/1C, find some c such that t E [l/c e - , I/cE]. We

then use Proposition 3.1 to obtain pii(t) < DcV ' ( ,i ) < Dev'(i). *

Inequality (3.3) is in general false if its assumption fails to hold.

We continue with a few remarks on the applicability and usefulness of Algorithms [ and II.

* Looking back at Algorithm 1, we see that in order to determine V(i,j) for i E R and j E R,

we only need to know the coefficients aij for i and j belonging to R. This has the following

* implication for Algorithm II: in order to compute the coefficients {Vd+(ij): i,j E Rd}, we only

need to know the coefficients {Vd(i,j): i,j E Rd}. Since Rd+lCRd, it follows that the coefficients

{V"(i,.j): s,j E Rd+ '} may be computed from the coefficients {V"(i,j): i,j E Rd}. Thus, if

we are only interested in determining which states are recurrent for each time scale (as well as in

determining the corresponding ergodic decomposition) we may eliminate, at cach stage of Algorithm

11, the states which have been found to be transient, that is the elements of 7'Rd. This observation,

* together with the fact that we only need to carry out the algorithm for just one representative

from each class R4, should result in a substantial ,rmount of savings, were the algorithm to be

implemented.

13
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Algorithm 11 is also applicable to continuous time Markov chains. For examnple, let there be

given a stationary (for simplicity) Markov chain whose generator A, is a polynomial in c and where

c is an unspccilied positive parameter. Then, the transition probabilities, over a time interval of

unit duration, satisfy inequalities (2.1), (2.2) for a suitable choice of aii. (In fact, the aij's may be

read-off from the Taylor series expansion of eA', or, equivalently by solving a shortest path problem;

the dctails are omitted.) Moreover, it can be shown that these coefficients aij automatically satisfy

assumption (2.3), so that Propositions 2.3 and 3.1 may be applied to the discrete time Markov chain

obtained by sampling the continuous time Markov chain at integer times. Finally, an elementary

argument shows that the estimates obtained are valid for non integer times as well.

We compare Algorithm 1I and Proposition 3.1 to the results available in the literature. There has

been a substantial amount of research on singularly perturbed stationary Markov chains [1,2,3,4,12].

Typical results obtain exact asymptotic expressions for the transition probabilities, as a small

parameter c converges to zero. These asymptotic expressions are obtained recursively, by proceding

from one time scale to the next one, similarly with Algorithm 1I. Each step in this recursion involves

the solution of systems of linear equations and, possibly, the evaluation of the pseudoinverse of some

matrices [1], which may be computationally demanding, especially if we are dealing with large scale

systems. However, we may conceive of situations in which we are not so much interested in knowing

the values of the transition probabilities, but rather we want to know which events are likely to

occur (over a certain time interval) and which events have asymptotically negligible probability (as c

goes to zero). For the latter case, a non-numerical, graph-theoretic, method is more natural. Such

a method (for stationary Markov chains) is implicit and easy to extract from the results of [12].

Algorithm II also accomplishes the same.

On the more technical side, it does not follow from the literature, neither is it a priori obvious,

that there exist integer coefficients Vd(i,j) such that inequalities of the type (3.1) bold. The

existing results provide approximations for those transition probabilities which do not vanish as e

approaches zero [1,2,3,4,12] but much less is known about the asymptotic behavior of the vanishing

transition probabilities. Furthermore, the techniques which are usually employed are tailored to

stationary Markov chains (e.g. perturbation theory of linear operators) and do not seem applicable

to the analysis of non-stationary chains. The discussion following Proposition 2.1 suggests one

method for applying results for stationary chains to non-stationary ones but it does not seem to

be universally applicable. Let us also point out that Proposition 3.1 is fairly easy to derive for

"nearly decomposable" Markov chains [3]. This is not the case for more general Markov chains; in

14
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particular, Lte exiteflce or tranuiian stakes which reed iinto diflcrczut ergodic claaws are the main

- .4ource or dilflculty [121.

15



IV, COOLING SCI~I,)UllS I'OIt SIMULATEI) ANNEALING.

In simulated annealing [6,10] we are given a sct S {l, ... , N} of states together with a cost

function J:S .W3 to be minimiizcd. (Our restriction that J takes integer values is not significant.)

The algorithm jumps randomly from one state to another and forms a Markov chain with the

following transition probabilities:

P(x(t + 1) = I x(t) = i) = Q(ij)xp[min{O, -(J(j) - J(i))/T(t)}], ifjA i, (4.1)

P( (t + 1) = I X(t = i) = I - : 1'(X(t + 1) = I X'l = i), (4.2)

where the kernel Q(i, j) is nonnegative and satisfies Ej Q(i, j) = I and T(t) > 0 is the "temperature"

at time t. It is known that if T(t) decrea.ses to zero slowly enough, then x(t) converges (in probabil-

ity) to the set at which J is minimized [5- 9,11]. We are interested in determining how slowly T(t)

must converge to zero, so that convergence to the minimizing states is obtained. This issue has been

resolved by Ilajek [91 under some restrictions on the structure of Q(i,j). We shall derive shortly the

answer to this question in a more general setting. Moreover our method establishes a connection

between simulated annealinZ, and the structure of singularly perturbed stationary Markov chains.

We formulate the problem to be studied in a slightly more general manner, as follows. Suppose

that we are given, a stochastic matrix P', (whose ij-th entry is denoted by pi-.) parameterized by

a positive parameter c and assume that there exist positive constants C 1 , C 2 and a collection A

(a,: I < i,j < N} such that ai. E JloUfoo}, V, j and such that pf. = 0, whenever aq = 0o and

C&tc" < pi*, < C20' , Vc E (0, 1], whenever ai" < co. Finally, we are given a function (cooling

schedule) f:) 0 -. (0, 1). We are interested in the Markov chain x(t) with transition probabilities

given by P(x( + 1) - j x(t) = i)

Clearly, the simulated annealing algorithm is of the type described in the preceding paragraph,

provided that we identify c(t) with -
/T1) and provided that we define a. = c, if Q(i,j) = 0,

i7j, and aij = max{0, J(j) - J(i)}, if Q(i,)# o, iuj. Also, ai has to be accordingly defined.

We now return to our general formulation. We thus assume that A, C1 , C 2 are given, together

with the schedule {c(t)). We assume that A satisfies (2.3) and we define, for any d E X/0, the

quantities Vd(i,j) and the sets lid by means of Algorithm If of Section Ill. Our main result is the

following.

Proposition 4.1: Assume that for some integer d> 0,

c ed(t) = 00, (4.3)
t=O
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E (d+I(t) < 00. (4.4)

t=O

Then,

(i) tmt,_ P(x(t) E R I x(O) -) = 1, Vi.

(ii) For any i E 114,im supt. P(z(t) - i I x(O) = i) > 0.

Proof: The main idea or the proof is to partition [0, co) into a set of disjoint time intervals [tk, tk+1)

such that x(t) is approximately stationary during each such interval, in the sense of Section 11, and

then use the estimates available for such Markov chains.

The proof for the case d = 0 is rather easy and is omitted. We present the comparatively

harder proof for the case d> 1.

We start with the proof of part (i) of the proposition. We define to = 0 and

t,,+lt+ = I-(t---' if t, - ) _4tN), (4.5)

1
t k+1 = max(t: (t)> (!-t)}, otherwise. (4.6)

(If tk+l as defined above turns out to be non-integer, we may assume that it is truncated to the

first integer below it.) We define AL, (respectively, As) as the set of all k's such that tk+t is defined

by (4.5) (respectively, (4.6)). We will need the following properties of the sequence {C(tk)}.

Lemma 4.1:
1(44) _< f(t) < (t.), Vt E [tk, th+i] (4.7)

SC(th) = cc, (4.8)
hEAL

f e2 (tk) < oo (4.9)
k=o

Let f(k, L) he the cardinality or ALnl, ..., k - 1}, for k>l. Then, for any C E (0, 1),
00 h

E E(l - C)f(k",)(th)4t,) < cc (4.10)
hO 1=0

k

lia E(I - C)I(k'I)c(t,) = 0, Vc E (0, 1). (4.11)

Proof; Inequalities (4.7) are an immediate consequence of (4.5), (4.6).

We notice that for any k E As, k' E As, with k' > k, we have c(tt,) < (1/2)t(t). Hence,
cc

C(th) < (0) 2 - < co. (4.12)
kEAs kh0

17



Finally,

t (th) = fd(tk )[tk+ I - tki Mt dt)[tA: - tkl] - Cd(tk)[tk+i L-k

kEAL kEAL k=O kEAs

00

E ~ C(t,) = 0,
t=0 kEAs

which proves (4.8).

From (4.12) we conclude that kEAs C2 (tk) < o. Also,

2i c2(tk) = Cd+'(tA)[tk+, - tk _ 2 d+ cd+I(t) < oo,
kEAt k=0 t=0

which proves (4.9).

Given any C E (0, 1), we define a constant a by [2(1 - C)J0 = 3/2, if 2(1 - C)> I; otherwise,

we let a = 1. Let B = {(k,l): k>L and I(k, la(k - )}. Then,

00 k

SC)]kIc(tk)C(tI) < c0,
(k,)E B k=O 1=0

because (1-C)" < I and e(k) is square summable, by (4.9). Now notice that 4(t) _ 2-(k-I)+(k)(t),

if k>L. Hence,

Z (I - C)f(k'L)(tk)c(tl) E E [2(1 - C)lf(k't)2-(k -)(ta) <
(k,)0 B,k d(k,09 B, k>!I

,( 3 / 2 )k-(1/ 2 )k-12(ti) < 0o,
k>1

which proves (4.10). The proof of (4.11) is similar and is omitted. *

We now define

So = R d = {i: if Vd(i,j) = 0 then Vd(j, i) 0),

S,+= {i E Rd-': i 0 SoU...US, and 3j E S such that V"-(ij) 1),

To = {i E TRd- 1 : 3j E So such that V4-1(j,i) = 1)

and we let T, be the complement of TO in TR - I. Notice that (U. oS)UToUT {1,...,N}.

Also, if i E S,, n 4 0 and Vd-I(i, 0, then j E l4l- and j E Sn. (For a proof of this fact,

if i E S,,, then i E R d-; so, if Vd-l(i,j) = 0, then Vd-(j,i) = 0 and therefore j E Rf1. Let

I E Sn-i be such that V4-(i,l) = 1. Then, Vd- 1 (j,L) = . So, either j E Sn and we are done,
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or j E SoU...US,,-,. In the second case, the same argument shows that i E SoU...uS.-, which is a

contradiction.)

We let y(k) = x(tk). We nccd estimates on the transition probabilities of the 1 4k) process.

These are obtained by noting that, for any k, the Markov chain {x(t): t E [tk,t&+i]} belongs to

.M,(t,)(A,2KC,C 2 ,O), where K = max{aij:aij < o). Since 4+ -tk _ l/(rdI(tk)), Corollary

3.1 may be used to obtain upper bounds. Also, for k E A,,, tA+t - tk = I/(Ed-(t)) and therefore

" Proposition 3.1 may be used to obtain lower bounds. In more detail, we have:

Lemma 4.2: There are constants F > 0, G > 0, such that, for every k E Nlo we have

(i) If k E Al, then P(y(k + 1) E S,, I y(k) E S-,-1) _ Fc(tk), Vn. (4.13)

(ii) P(y(k + 1) S,, I y(k) E Sn) Gr(tk;), Vn. (4.14)

(iii) P(y(k + 1) SoUT 0 Iy(k) E So) < G 2 (tk). (4.15)

(iv) 1'(y(k + 1) 5 SoUTo y(k) E To) <_ Gc(tk). (4.16)

(v) P(y(k + 1) E To I (k) E So) < Gc(tk). (4.17)

(vi) If k E AL, then P(y(k + 1) E So Iy(k) E To) >F. (4.18)

(vii) If k E AL, then, for all i, P(y(k + 1) E TR - I y(k) = i) < 1 - F. (4.19)

Proof: (i) If i E Sn+ , then (by definition) there is some j E Sn such that Vd-1(i,j) 1. The result

*( follows from the lower bound in (3.2).

(ii) Let i C S,,, j 0 S,,. We have shown earlier that we must have V-'(i,j)> I and the result

follows from (3.3).

(iii) Let i E So and j 0 SoUT0. If j E S,,, ng 0, then j g Rd; hence Vd(i,j)> 1. Therefore, using

the definition of V', we have 1 < Vd(i,j) Va(i,i) + Vd-l(i,j) - 1 = Vd-1(i,j) - 1. Hence

Vd-(i,j)> 2. Finally, ifj E TI, then V'-(i,j) 2, because otherwise we would have j E To. The

result follows from (3.3).

(iv) Let i E To and j 9 SoUTO Let us also choose some I E So such that Vd-t(l, i) = 1 (which exists

by the definition of TO). If j E S, n-A4 0, then Vd-(i,j)> 1, because otherwise Val(I,j) = 1,

* which contradicts the discussion in the proof of part (iii). So, for this case the result follows from

(3.3). Suppose now that j E Ti. For any c < d - I we must have V(i,j)>_ 1 because otherwise

(using Proposition 3.2) Vd- 1 (Ij) < Vd-(I,i) + V(i,j) = 1, which contradicts the assumption

j E T 1 . The result follows again from (3.3).

(v) This is immediate from V-l(ij)> 1, Vi E Rd- , Vj E TR -1 (Proposition 2.2, part (ii)).

(vi) Let i E To. Since i E TRd- 1, there exists some j E Rd - l such that V'-'(i,j) = 0. By the

previous discussiun, such aj cannot belong to Sn, for n> 1. The result follows from (3.2).
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(vii) Similarly, for any i there exists some j E Rd- I such that V-I(i,j) = 0 and the result follows

from (3.2).

Let

1k = '(y(n) E SuTo, 0 < n < k lY(O) E So),

Q. = P(y(k)E To It(n) E SoUTo, 0 < n < k - 1, y(O) E So).

Using (4.17), (4.18), we obtain

Qk+1 G<(t) + (I - XkF')Qk,

where Xk = I if k E AL and Xt = 0, otherwise. So,

&

Qk _< G j (t,)(I - F)("k ).
-=0

Using (4.15), (4.16),

ll.+, [1 - G,(t&)Q& - Gf2 (tk)]I[k (4.20)

Now, c(tk)Qk is summable, by (4.10); also, E2 (tk) is suinmable, by (4.9). Hlence lir inf.-o., I& > 0.
More intuitively, once the state enters So, there is positive probability that it never leaves SUT.

Consequently, the total flow of probability into so from S, must be finite. lHence, using (4.13), we

have
00

1: Qt)P(y(k) E SI) < Oo.
k=O

We will prove by induction that for all n> 1,

- c(tk)P(y(k) E S,) < oo. (4.21)
k-O

Using (4.13), (4.14), we have

P(y(k + 1) E S,) 2! P(y(k) E Sn) - G(tk)I'(y(k) E S,) + XAFc(tk)P(y(k) E S,+,). (4.22)

By telescoping the inequality (4.22) and using the induction hypothesis (4.21), we see that

J:ioXL(k)P(I(k) E S.+i) < 0c. Also, ~2 Esc(tk)P(i,(k) E S. + 1) :5 XA ~t)<c
(because of (4.12)) which completes the induction step. Using (4.21) and the fact that c(tk) sums to

infinity wc conclude that lim sup-.o P(y(k) E SOUTRd 1- ) - 1. We show next that the probability
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of transient states goes to zero. Inequalities (4.14) ail (4.19) imply

P(y(k + 1) E T d - ' ) <_ Gc(tk) + (I - xkF)P(y(k) E TRd-).

Thus,

P(y(k + 1) E T1-") < (1 - F)fSk ,0 + G E(I - 1,' (t,),
1=

which converges to 0, as k tends to infinity, due to (4.11). We may thus conclude that lim sup,,-. P(y(k) E

So) = 1. By repeating the argument that led to (4.20) we can see that the probability that y ever

exits SOUT, given that y(k) E So, converges to zero, as k--,oo. (This is a consequence of the square

suminability of t(t).) It follows that limA_, P(y(k) E So) = 1. Finally, for any t E [tk, t+i] we

have P(x(t) E So) P(y(k) E So) - Gc(t), which converges to 1, as k-,oo. This completes the proof

of part (i) or the proposition.

For part (ii) of the proposition, in order to avoid introducing new notation, we prove the

equivalent statement that if ' o 0d(t) < oc, then lim supt-. P(x(t) = i I x(O) = i) > 0, Vi E

Rd - . So, let i E Rd-I and consider the set R d. For any j 0 R- 1 , we have VdI(j, 0 and,

therefore, (using Corollary 3.1), there exists some G > 0 such that

P(y(k + 1) 0 R, - ' 1 y(k) E Rf -
d) < Gf(th), Vk.

Since we are assuming that E 00 rd(t) < oc, it follows (as in the proof of (4.9)), that >'L.0 c(4) <

oo. Consequently,

inf P(y(k) E R4- 1 Ij(O) = i) > 0. (4.23)

Finally, for any j E R4- 1 we have Vd-I(j,i) = 0. Hence, using Proposition 3.1, there exists some

F > 0 such that

P(y(tk+L) = ii $(t) E Rh') >_ F. (4.24)

By combining (4.23), (4.24), we obtain the desired result. e

Corollary 4.1: Let the transition probabilities for the simulated annealing algorithm be given by

(4 1), (4.2). Consider cooling schedules of the form T(t) = c/logt. The smallest constant c such

that, for any initial state, the algorithm converges (in probability) to the set of global minima of J,

equals the smallest d such that the set of global minima contains Rd.

Proof: Let d" be the smallest such d. Ilaving identified exp[-l/T(t)] with c(t), we see that the algo-

rithm converges appropriately if and only if E001 exp[-d* log t/c] - o. Equivalently, r.0 t ( - d t c) -

oo, which is equivalent to d* < c. e
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Proposition 4.1 can be applied to any continuous time simulated annealing algorithm, because in

that cas we may sample the Markov chain at integer times and condition (2.3) will be automatically

true. For discrete time algorithms, even if (2.3) fails, the result is still valid for any structure A

such that the estimates (2.8) of Proposition 2.3 are true (with an appropriate choice of V(i,j)). We

have seen in Section 11 that this is the case for a much broader class of Markov chains. In fact, we

conjecture that Proposition 4.1 is always true, provided that the sets Rd are correctly defined.

Another possibility for generalizing Proposition 4.1 comes by allowing the schedule c(t) to be

non-mionotonic. In fact the proof goes through (with a minor modification iii the definition of the

sequence {tk}) if we only assume that there exists some C > 0 such that c(t) < Cc(s), Vt>s, which

allows for mild non--monotinicity. On the other hand, if c(t) is allowed to have more substantial

variations, then the conclusions of Proposition 4.1 arc no more true. For a simple example consider

the Markov chain of Figure 1, together with the schedule c(t) = t - 1/ 2 , if t is even, and C(t) = l1t,

if t is odd. For this schedule, the largest integer for which -_ cd(t) = oc is equal to 2. Also,

R 2 = {3}. On the other hand, P(x(t) = 3 I x(O) = 1) does not converge to 1.

We have claimed that our result generalizes the results of [9] and we end the paper by supporting

this claim. llajek's result characterized do in an explicit manner, as the maximum depth1 of local

minima which are not global minima, under a "weak reversibility" assumption, which is equivalent

to imposing certain restrictions on the structure A. Our characterization is less explicit because

instead of describing do we give an algorithm for computing it in terms of A. Nevertheless, for the

class of structures A considered in [9], we can use our Algorithm II to show that Rd is the set of

all local minima of the cost function J, of depth d + 1, or more. Hence, the do produced by our

algorithm is the smallest d such that all local (but not global) minima have depth d or less, which

agrees with the result of [9]. We do not present the details of this argument since it would amount

to redcriving a known result.

1. The depth of a state i is defined as the minimum over all j, such that J(j) < J(i), of the
minimum over all paths leading from i to j, of the maximum of J(k) - J(i), over all k's belonging
to that path; the depth of i is infinite if no such j exists.
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